
FetchBPF: Customizable Prefetching Policies in Linux with eBPF

Xuechun Cao
University of British Columbia

Shaurya Patel
University of British Columbia

Soo Yee Lim
University of British Columbia

Xueyuan Han
Wake Forest University

Thomas Pasquier
University of British Columbia

Abstract
Monolithic operating systems are infamously complex. Linux
in particular has a tendency to intermingle policy and mecha-
nisms in a manner that hinders modularity. This is especially
problematic when developers aim to finely optimize perfor-
mance, since it is often the case that a default policy in Linux,
while performing well on average, cannot achieve the optimal
performance in all circumstances. However, developing and
maintaining a bespoke kernel to satisfy the need of a specific
application is usually an unrealistic endeavor due to the high
software engineering cost. Therefore, we need a mechanism to
easily customize kernel policies and its behavior. In this paper,
we design a framework called FetchBPF that addresses this
problem in the context of memory prefetching. FetchBPF ex-
tends the widely used eBPF framework to allow developers to
easily express, develop, and deploy prefetching policies with-
out modifying the kernel codebase. We implement various
memory prefetching policies from the literature and demon-
strate that our deployment model incurs negligible overhead
as compared to the equivalent native kernel implementation.

1 Introduction

With a growing demand of memory capacity in memory-
intensive applications, especially machine learning programs,
researchers and practitioners alike have turned their attention
to improving the memory management system [24, 36]. In
particular, one focus area is to optimize memory prefetch-
ing [6, 9, 10, 17, 26, 28, 29, 31, 32, 35, 37, 38]. Despite the
progress, existing solutions face the following challenges to
be widely adopted.

First, a one-size-fits-all prefetcher that provides optimal per-
formance for all applications does not exist. A new prefetching
policy might excel in one memory access pattern but not an-
other. For example, Leap [28] outperforms the built-in Linux
prefetcher – which is optimized for sequential access patterns
– when an application exhibits a large strided pattern; however,
it lags behind Canvas [35] for workloads that involve chasing

a large number of pointers. In §2, we provide empirical results
to demonstrate this challenge more concretely.

An obvious, albeit naïve, way to address the first challenge
is perhaps to have multiple prefetching policies in the ker-
nel and choose from them the most appropriate one based
on specific memory access patterns [26]. However, whether
this approach would scale to an arbitrary number of policies
is unknown. In fact, an optimal set of policies that would
accommodate all possible access patterns likely does not ex-
ist. Meanwhile, implementing a new policy in the kernel is a
Herculean task. Evidence from studies of other kernel develop-
ment [21] suggests that the engineering effort would typically
exceed the capacity of an average developer team. Even if the
implementation was successful, further complications, such
as maintaining a bespoke kernel distribution or convincing the
mainline kernel to adopt the policy (e.g., in the Linux case),
would require a tremendous amount of labor and time [22].

To ease development and maintenance, prior work [31, 35]
has considered implementing prefetching policies in user
space. On the one hand, user-space applications could better
inform the prefetching mechanism of finer semantic hints; on
the other hand, a lack of kernel access eventually complicates
development [25]. This approach also introduces significant
overhead, mainly from context switches between user space
and the kernel. This could negate any performance gain, as
recent work [35] has shown that prefetched pages are typically
used by an application within a very short time frame.

We introduce FetchBPF, an alternative solution that lever-
ages eBPF to overcome these challenges. eBPF is a Linux
framework that allows users to load customized features to
the kernel without modifying the kernel’s codebase [3]. Build-
ing atop the eBPF framework and expanding its functionality,
FetchBPF simplifies the development of new prefetching poli-
cies in the kernel with negligible performance overhead. To
design FetchBPF, we study existing prefetching policies in the
literature and identify fundamental kernel mechanisms that
drive their implementations. Following these observations,
we modify the kernel by adding new eBPF hooks to imple-
ment custom prefetching policies and additional eBPF helper

Figure 1: Workflow of the eBPF framework.

functions to evoke necessary kernel mechanisms.

Contributions
• We empirically show that applications with different

memory access patterns benefit from different policies
(§2).

• We propose an extension to the Linux eBPF framework
to implement prefetching policies (§3).

• We implement (§4) and evaluate (§5) a number of policies
from the literature to showcase FetchBPF.

2 Background & Motivation

We describe the eBPF framework in §2.1 and how prefetching
works in Linux in §2.2. We then motivate FetchBPF by show-
ing how the performances of different prefetching policies
vary under different workloads in §2.3.

2.1 eBPF
The extended Berkeley Packet Filter (eBPF) is a Linux frame-
work that allows users to extend the kernel without any modi-
fication to the kernel’s source code. To ensure that the kernel
extension is safe, all user-provided eBPF programs are stati-
cally checked by the eBPF verifier before they are allowed to
execute. Once verified, eBPF programs are JIT-compiled into
native machine code for performance. With safety and effi-
ciency at the core of the eBPF design, eBPF is widely adopted
for tracing [1] and networking [2, 5]. Furthermore, eBPF can
also be used to customize and fine-tune the behavior of core
kernel policies (e.g., scheduling [8] and auditing [27]).

As shown in Fig. 1, eBPF programs are event-driven, in-
voked when the hooks they are attached to are triggered. For
example, an XDP program is a type of an eBPF program at-
tached to the network interface card (NIC). When a packet
arrives at the NIC, control is transferred to the eBPF program,
where users can process the packet before it reaches the kernel.

Figure 2: An overview of prefetching in Linux.

eBPF supports a variety of kernel hooks, e.g., system calls,
tracepoints, and kernel probes. The type of an eBPF program
dictates the set of hooks it can be attached to. It also deter-
mines the list of in-kernel helper functions it is allowed to call,
as eBPF programs cannot call arbitrary kernel functions. eBPF
programs use eBPF maps to persist data across programs and
execution instances, and to share data with user space.

2.2 Linux Prefetching Policy
When memory is under stress, pages are swapped out. Re-
trieving those pages when they are needed again is expensive.
To improve performance, an operating system (OS) tries to
predict which swapped-out pages will be needed and prefetch
them. We summarize at a high level Linux’s prefetching policy
and mechanisms in Fig. 2.

When a page fault is detected, the kernel first checks if the
page resides in the page cache. A minor fault occurs when the
page is present in the cache but not yet mapped. The kernel
simply updates the page-fault statistics and maps the page. If
the page is not found in the cache, then a remote request is
issued to bring the page to memory. As remote accesses are
expensive (e.g., when reading from the disk), in addition to
loading the requested page, the kernel prefetches pages that it
predicts will be used in the near future. To determine which
pages to prefetch, the default Linux prefetching policy follows
a sequential pattern [16]. Once the kernel has identified the
pages to be prefetched, it issues remote access requests and
maps the requested page.

2.3 Motivating Experiments
In Fig. 3, we show the execution time of six prefetching poli-
cies for six regimes described in §5.3. In §5, we dive into
these results and discuss how a prefetching policy impacts the
execution time. Each regime showcases a particular memory
access pattern described in prior work [6, 11, 26, 28]. Given a
regime, the best policy is the one that minimizes the execution
time. We observe that no policy outperforms the others in all

sqn sqnsqn striderandom sqnrandom stridesqn ladder
random ladder0

1

2

3

Figure 3: Execution time (lower is better) of ■ default,
■ VMA, ■ leap, ■ leap VMA, ■ ladder, ■ ladder VMA,
under six different regimes. Values are normalized using the
best performing policy on a particular regime.

regimes. For example, the ■ leap policy is the best on the
sqn stride regime but the worst on all other five regimes.
On the random sqn regime, running the ■ leap policy mul-
tiplies the execution time by more than three compared to the
best performing policy. Clearly, deploying policies that best
fit specific workloads can significantly improve performance.

3 Design & Implementation

FetchBPF is an extension to the existing eBPF framework; its
design is guided by our analysis of existing prefetching poli-
cies (§3.1). Specifically, we modify the kernel to include two
additional hook points where prefetching-related eBPF pro-
grams can be triggered (§3.2): A⃝ when a page fault occurs and
B⃝ when the kernel decides on the specific pages to prefetch
(see Fig. 2). We also include additional eBPF helper functions
(§3.3); they enable developers to evoke kernel mechanisms
related to page prefetching (1⃝, 2⃝, and 3⃝ in Fig. 2).

3.1 Design Process
The first step in our design process is to understand existing
prefetchers and identify common components and patterns in
their workflows. This investigation informs us of fundamental
building blocks, which guides us to build a flexible framework
that supports the development and deployment of custom in-
kernel prefetchers. We make the following observations of the
common workflow features from existing prefetchers:
A⃝ Prefetching policies [6, 10, 28] typically require as input
a history of memory accesses, either physical or virtual. The
exact type and computation of such information needed by
a prefetcher is policy specific. Therefore, FetchBPF should
allow developers to customize the capture and computation
of the historical information through an eBPF program.
B⃝ Prefetchers [6,10,26,28,35,37] run before a faulting page is
requested; prefetching requests are then issued along with the
page. FetchBPF should enable the prefetcher to call an eBPF
program that implements custom prefetching logic, which

typically uses the historical statistics computed from the eBPF
program at A⃝.
1⃝, 2⃝, and 3⃝ Prefetching policies issue I/O requests, but the
specific I/O mechanism depends on the backend device, not
the policy itself. For example, batching requests together is
preferred when the backend is a disk-based device [6, 28] but
not when an RDMA (remote direct memory access) backend
is used [9, 28]. I/Os are functionalities provided by the kernel,
which should be available to developers when they implement
the policy.

3.2 eBPF Hooks
The Linux kernel executes an eBPF program when it encoun-
ters an eBPF hook that the program is attached to. Hooks
are predefined in the kernel; they capture events such as sys-
tem calls, function entries and exits, and network activities.
We add two hooks in the kernel to support the expression of
customized prefetching policies.
A⃝prefetch_stats: FetchBPF triggers an eBPF program
attached to this hook every time a page fault occurs, including
both major and minor faults. Policies such as Leap [28] use
the history of faulting addresses to gain insight into memory
access patterns. Therefore, this hook is typically used to record
such data. Parameters passed to it include information about
the physical and virtual address of the faulting page to support
policies based on these addresses.
B⃝ prefetch_policy: FetchBPF triggers an eBPF pro-
gram attached to this hook before the execution of the default
Linux prefetching policy. Like in A⃝, information about the
physical and virtual address of the faulting page is passed
as parameters. The eBPF programs attached to this hook are
expected to (1) identify pages of interest and (2) request the
kernel to prefetch them through helper functions (§3.3). They
must return either an error code or one of the two values:
PREFETCH_RA_DEFAULT_PREFETCH or PREFETCH_RA_SKIP.
The former indicates that the default policy must be executed,
whereas the latter skips the default policy execution. This
enables developers to either completely replace the default
policy or complement it (as done in Leap [28], for example).

3.3 Helper Functions
eBPF programs, unlike the built-in kernel code, drivers, or
loadable kernel modules, have no access to the entire kernel
address space and cannot call arbitrary kernel functions. In-
stead, they are limited to their program parameters and kernel-
provided helper functions that perform actions on their behalf.
FetchBPF implements the following helper functions:
1⃝ bpf_prefetch_physical_page: This helper func-

tion triggers the mechanism to prefetch pages based on phys-
ical addresses. It takes as input the parameters given to the
eBPF program (§3.2). Specifically, the information about phys-
ical swap entry offsets is used to perform page I/O.

1 SEC("prefetch_policy")
2 int policy_handler(struct swap_entry_info *ctx)
3 {
4 unsigned int count = 0;
5
6 // turn on block device plug
7 bpf_start_block_plug(ctx->plug);
8
9 while(count < 3){

10 bpf_prefetch_physical_page(ctx);
11 // increment the offset to the faulting page
12 ctx->offset++;
13 count++;
14 }
15 // turn off block device plug
16 bpf_stop_block_plug(ctx->plug);
17 }

Figure 4: A simple policy fetching the faulting page and two
subsequent physical pages.

2⃝ bpf_prefetch_virtual_page: This helper func-
tion triggers the mechanism to prefetch pages based on virtual
addresses. It takes the same input as the previous helper func-
tion; however, the function prefetches pages based on pte
(page table entries) and pte offsets.
3⃝ bpf_<start/stop>_block_plug: These two

helper functions enable a policy to control prefetching request
batching. All requests made after bpf_start_block_plug
are batched. When bpf_stop_block_plug is called, batched
requests are processed (e.g., sorted and merged) to optimize
I/O. The idea behind plugging is to build up requests to better
utilize the hardware and to merge sequential requests into
larger ones.

4 Policy Examples

We use a simple policy (Fig. 4) to illustrate how developers
can implement a prefetching policy in FetchBPF. This policy
loads the faulting page and two subsequent pages. In §5, we
discuss five policies that we implemented in FetchBPF. Due to
space constraints, we discuss the implementation of the leap
and leap VMA policies here to illustrate the use of FetchBPF.
Leap. Leap [28] uses the Boyer-Moore algorithm [14] to
find the majority stride pattern within the page fault his-
tory. We use an eBPF map (of the array type) to store the
memory access history. Specifically, the prefetch_stats
program populates the map with the address of a faulting
page and its distance from the address of the previous fault-
ing page. The prefetch_policy program uses this infor-
mation to identify the majority stride, i.e., the most fre-
quent distance between two faulting pages. It then calls the
bpf_prefetch_physical_page helper function to prefetch
the relevant pages.
Leap VMA (Virtual Memory Area). We modified the

Leap algorithm to make prefetching decisions based on
page table entries instead of physical addresses. VMA-based
prefetching is shown to be more effective [26], since a
program’s access pattern is based on virtual rather than
physical addresses. The prefetch_stats program now
records page table entries and their relative distances. The
prefetch_policy program is modified accordingly and calls
the bpf_prefetch_virtual_page helper function.

5 Evaluation

We implement FetchBPF on the Linux kernel version 6.1.8.
We run our expriments on an Intel i7-12700 [4] machine with 8
performance cores 2.10GHz-4.90GHz (16 threads), 4 efficient
cores 1..60GHz-3.60 GHz (4 threads), 32GB DDR5 RAM,
and an NVMe drive as the swap backend. We use cgroups to
intentionally limit the amount of memory available to appli-
cations. Our evaluation focuses on answering the following
two research questions:
Q1. Does implementing a prefetching policy using FetchBPF
affect the policy’s accuracy and coverage performance?
Q2. Is there performance degradation when using FetchBPF
as compared to implementing a policy natively in the kernel?

5.1 Metrics

We use three metrics to quantitatively evaluate FetchBPF:
Accuracy, defined as the ratio of cache hits over the number
of prefetched pages (cache hits

of prefetched pages), measures the number
of prefetched pages that are indeed used by an application.
Coverage, defined as the ratio of cache hits over total page
faults (cache hits

cache hits+cache misses), measures the extent to which the
pages predicted by the prefetcher help reduce major faults.
Execution time is the overall execution time of a benchmark.

5.2 Policies

We implemented five prefetching policies in both FetchBPF
and the Linux kernel. These policies are the VMA policy [6], the
leap and leap VMA policies described in §4, and a ladder pol-
icy based on physical addresses (ladder) and VMA (ladder
VMA) from prior work [26]. The ladder policy is tailored for
applications where memory accesses initially follow a strided
pattern for a short period of time but then jump to a different
memory location followed by another strided pattern. Prior
work [26] has shown that policies like leap do not perform
well under this type of patterns.

sqn sqn sqn stride random sqn random stride sqn ladder random ladder
0

0.5

1

(a) Accuracy (the higher the better)

sqn sqn sqn stride random sqn random stride sqn ladder random ladder
0

0.5

1

(b) Coverage (the higher the better)

sqn sqn sqn stride random sqn random stride sqn ladder random ladder
0

50

100

150

(c) Execution time in seconds (the lower the better)
Figure 5: Performance evaluation of ■ default, ■ VMA, ■ VMA eBPF, ■ leap, ■ leap eBPF, ■ leap VMA, ■ leap VMA
eBPF, ■ ladder, ■ ladder eBPF, ■ ladder VMA, ■ ladder VMA eBPF, under six different regimes. The first part of the
regime label represents the allocation pattern and the second part the access pattern.

5.3 Experimental Results

Microbenchmarks
We design and run a suite of six microbenchmark programs to
evaluate FetchBPF. Each program allocates a 5GB array but
differs from each other in terms of its allocation and access
pattern. We define below two allocation patterns and three
access patterns; we call each unique combination of the two
types of patterns a regime.
Allocation Patterns. (1) Sequential allocation (sqn), where
we allocate array elements (pages) in order in physical mem-
ory, and (2) random allocation (random), where we allocate
elements randomly; it simulates a scenario where multiple
threads allocate pages simultaneously.
Access Patterns. (1) Sequential (sqn), where we access array
elements in a sequential order, (2) stride (stride), where we

access array elements on every third virtual page (i.e., a stride
of three pages), and (3) ladder (ladder), where we access
array elements with an increasing stride with every access.
After accessing seven elements, we access an element that is
three pages beyond the last accessed page. Then, we access
another element that is 20 pages ahead of the page that we
just accessed. We repeat this ladder-like access pattern.

Fig. 5 shows the accuracy (Fig. 5a), coverage (Fig. 5b), and
execution time (Fig. 5c) of all six regimes. We limit DRAM
allowance to 20% of working set size. As a quick sanity check,
we note that a policy outperforms the other policies on the
regime that it is designed for. For example, the ■ leap VMA
policy excels on the random stride regime, because (1) VMA
is oblivious to physical memory allocation order but bases
its prefetching decisions on virtual addresses, and (2) leap is
designed to identify stride patterns of memory access. This
matches our intuition and the observations in §2.3.

0 10 20 30 40 50
0.985

0.99

0.995

1

Latency in cycles (x1e7)

Native
FetchBPF

Figure 6: CDF of the latency of the VMA policy implemented
in FetchBPF vs natively in the kernel.

More importantly, we see that the FetchBPF implemen-
tations of prefetching policies have the same accuracy and
coverage as their in-kernel counterparts on all regimes, which
again aligns with our expectation. For execution time, the dif-
ference between a FetchBPF and in-kernel implementation is
statistically insignificant. This supports our hypothesis that
eBPF is a good mechanism to implement prefetching policies.
Page-fault Latency. Fig. 6 shows the cumulative distribu-
tion function (CDF) of page-fault latencies of the ■ VMA and
■ VMA eBPF policies implemented in the kernel and with
FetchBPF respectively. FetchBPF does not incur significant
additional latency. This is not surprising, because (1) latency
is dominated by page retrieval; and (2) eBPF programs are
JIT compiled and executed as native machine code in the
kernel [19], achieving performance similar to that of built-in
kernel functions.

Macrobenchmarks
We evaluate the end-to-end performance on five benchmarks
from three popular systems:

1. VoltDB running TPC-C (voltdb);
2. two variations of Redis’ memtier benchmark, random

(redis-random) and sequential (redis-sequential)
key access;

3. GapBS’s [13] PageRank (gapbs-pr) and betwee-
ness centrality (gapbs-bc) algorithms on the Twitter
dataset [23].

For each experiment, we limit DRAM allowance to 25%
(Fig. 7a) and 50% (Fig. 7b) of the size of its working set. We
compare the ■ VMA eBPF, ■ leap eBPF, and ■ leap VMA
eBPF policies implemented in FetchBPF against their native

kernel implementations (■ VMA, ■ leap, and ■ leap VMA).
The normalized performance results for each experiment are
shown in Fig. 7 (and the raw data are reported in Appendix A).
FetchBPF does not degrade application performance com-
pared to the native kernel implementations. We note that the
performance of different policies varies depending on the
amount of memory available to them. More importantly, good
prefetching decisions result in a more significant improvement
on performance when the available resources become more
scarce (Fig. 7a).

High-performance applications such as those in Fig. 7 are
highly optimized for the Linux default prefetcher, which takes
countless hours of engineering effort. FetchBPF represents
a paradigm shift, where the policy instead gets optimized
to improve the performance of the application. Recent ad-
vances [15, 20] indicate that this process could be automated.

6 Related Work

eBPF and Custom Policies. eBPF is a popular framework
to customize kernel behavior. For example, Lake [18] ex-
tends eBPF to enable developers to deploy custom policies to
manage the use of hardware accelerators for machine learn-
ing. Google recently developed an eBPF version [7, 8] of
Ghost [21] to customize the Linux scheduling policy. Prior
work and ours share the same observations that the kernel’s de-
fault policy does not fit all workloads, but supporting bespoke
policies natively in the kernel is not sensible. eBPF is the best
alternative to facilitate the expression of tailored policies.

Like FetchBPF, P2Cache [25] also targets prefetching but
offers far less flexibility. For example, it allows developers
to customize only certain aspects of the default policy, while
FetchBPF supports completely new policies. We were not able
to evaluate FetchBPF against P2Cache, because, to the best of
our knowledge, it is closed-source (at the time of writing) and
the complexity of its API makes reimplementing P2Cache
ourselves based purely on the publication difficult.
Other Types of Prefetchers. Past work [12, 26, 29] has ex-
plored hardware features to obtain more precise information
about memory access patterns. FetchBPF could be extended
to support such approaches, e.g., by adding dedicated helper
functions to access hardware information. We could also ex-
tend FetchBPF to obtain user-space information to facilitate
prefetching. Unlike prior work [35, 37] that involves solving
complex engineering issues to access user-space information
across kernel boundary, FetchBPF can simplify this process.
Data Path Optimization. We can optimize an application’s
performance by not only improving prefetching policies but
also optimizing page I/O paths [9, 28, 35]. For example,
Fastswap [9] optimizes page I/O by removing head-of-line
blocking from critical paths. Leap [28] removes Linux’s disk
I/O optimization from its block I/O interface to make it suit-
able for faster access storage such as RDMA. Canvas [35]

voltdb redis-random redis-sequential gapbs-pr gapbs-bc0

0.5

1

1.5

2

(a) We limit DRAM allowance to 25% of the size of the experiment working set.

voltdb redis-random redis-sequential gapbs-pr gapbs-bc0

0.5

1

1.5

2

(b) We limit DRAM allowance to 50% of the size of the experiment working set.

Figure 7: Performance of ■ VMA, ■ VMA eBPF, ■ leap, ■ leap eBPF, ■ leap VMA, ■ leap VMA eBPF for five benchmarks.
Values are normalized using the best performing policy under a particular workload (i.e., the lower the value, the better). Numerical
results are available in Appendix A.

implements a two-tier scheduling policy for page I/O requests.
While FetchBPF focuses on prefetching, a future extension
could explore the possibilities of I/O data path customization.

7 Conclusion & Future Work

Customizing a prefetching policy that is tailored to an appli-
cation’s page access patterns can improve its performance.
FetchBPF is an extension to the eBPF framework that enables
users to easily deploy new prefetching policies without de-
veloping or maintaining a dedicated kernel. Our evaluation
shows that FetchBPF accomplishes the same functionality
but incurs no additional performance overhead when com-
pared to a policy directly implemented in the kernel. In future
work, we plan to achieve FetchBPF’s full potentially by au-
tomatically generating application- and environment-specific

policies through the use of application hints [15, 30, 33, 34].

Acknowledgments

We thank USENIX ATC 2024 reviewers for their feedback
and their help in improving the paper. We acknowledge the
support of the Natural Sciences and Engineering Research
Council of Canada (NSERC). Nous remercions le Conseil
de recherches en sciences naturelles et en génie du Canada
(CRSNG) de son soutien. This material is based upon work
supported by the U.S. National Science Foundation under
Grant CNS-2245442. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

[1] bpftrace. Online (Accessed: 2nd July 2024). https:
//github.com/iovisor/bpftrace.

[2] Cilium. Online (Accessed: 2nd July 2024). https:
//github.com/cilium/cilium.

[3] ebpf. Online (Accessed: 2nd July 2024). https://eb
pf.io/.

[4] Intel Core i7-12700 Processor. Online (Accessed:
2nd July 2024). https://ark.intel.com/cont
ent/www/us/en/ark/products/134591/intel-c
ore-i7-12700-processor-25m-cache-up-to-4-9
0-ghz.html.

[5] Katran. Online (Accessed: 2nd July 2024). https:
//engineering.fb.com/2018/05/22/open-sourc
e/open-sourcing-katran-a-scalable-network
-load-balancer/.

[6] mm, swap: VMA based swap readahead, 2017. https:
//lwn.net/Articles/716296/.

[7] ghOSt: Fast & Flexible User-Space Delegation of Linux
Scheduling, 2021. https://lwn.net/Articles/873
244/.

[8] eBPF Kernel Scheduling with Ghost, 2022. https:
//lpc.events/event/16/contributions/1365/a
ttachments/986/1912/lpc22-ebpf-kernel-sch
eduling-with-ghost.pdf.

[9] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K Aguilera, Aurojit
Panda, Sylvia Ratnasamy, and Scott Shenker. Can far
memory improve job throughput? In European Confer-
ence on Computer Systems (EuroSys’16). ACM, 2020.

[10] Amro Awad, Sergey Blagodurov, and Yan Solihin. Write-
Aware Management of NVM-based Memory Exten-
sions. In International Conference on Supercomputing
(ICS’16). ACM, 2016.

[11] Grant Ayers, Heiner Litz, Christos Kozyrakis, and
Parthasarathy Ranganathan. Classifying Memory Ac-
cess Patterns for Prefetching. In Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS’20). ACM, 2020.

[12] Reza Azimi, Livio Soares, Michael Stumm, Thomas
Walsh, and Demke Angela Brown. Path: Page Access
Tracking to Improve Memory Management. In Interna-
tional Symposium on Memory Management (ISMM’07).
ACM, 2007.

[13] Scott Beamer, Krste Asanović, and David Patterson. The
gap benchmark suite. arXiv preprint arXiv:1508.03619,
2015.

[14] Robert S Boyer and J Strother Moore. A fast string
searching algorithm. Communications of the ACM, 1977.

[15] Christopher Branner-Augmon, Narek Galstyan, Sam Ku-
mar, Emmanuel Amaro, Amy Ousterhout, Aurojit Panda,
Sylvia Ratnasamy, and Scott Shenker. 3PO: Programmed
Far-Memory Prefetching for Oblivious Applications.
arXiv preprint arXiv:2207.07688, 2022.

[16] Ali Butt R., Chris Gniady, and Y. Charlie Hu. The Per-
formance Impact of Kernel Prefetching on Buffer Cache
Replacement Algorithms. In International Conference
on Measurement and Modeling of Computer Systems
(SIGMETRICS’05). ACM, 2005.

[17] Viacheslav Fedorov, Jinchun Kim, Mian Qin, Paul
Gratz V, and A. L. Narasimha Reddy. Speculative Paging
for Future NVM Storage. In International Symposium
on Memory Systems (MEMSYS’17). ACM, 2017.

[18] Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel
Szekely, Bodun Hu, Aditya Akella, and Christopher Ross-
bach J. Towards a Machine Learning-Assisted Kernel
with LAKE. In International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS’23). ACM, 2023.

[19] Mark Fleming. A thorough introduction to eBPF. Online
(Accessed: 2nd July 2024). https://lwn.net/Arti
cles/740157/.

[20] Zhiyuan Guo, Zijian He, and Yiying Zhang. Mira: A
Program-Behavior-Guided Far Memory System. In Sym-
posium on Operating Systems Principles (SOSP’23),
pages 692–708. ACM, 2023.

[21] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,
Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo,
Oleg Rombakh, Paul Turner, and Christos Kozyrakis.
ghOSt: Fast & Flexible User-Space Delegation of Linux
Scheduling. In Symposium on Operating Systems Prin-
ciples (SOSP’21). ACM, 2021.

[22] Yujuan Jiang, Bram Adams, and Daniel M German. Will
my patch make it? and how fast? case study on the Linux
kernel. In Working conference on Mining Software
Repositories (MSR’13). IEEE, 2013.

[23] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue
Moon. What is Twitter, a social network or a news me-
dia? In International Conference on World Wide Web
(WWW’10), pages 591–600. ACM, 2010.

https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://github.com/cilium/cilium
https://github.com/cilium/cilium
https://ebpf.io/
https://ebpf.io/
https://ark.intel.com/content/www/us/en/ark/products/134591/intel-core-i7-12700-processor-25m-cache-up-to-4-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/134591/intel-core-i7-12700-processor-25m-cache-up-to-4-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/134591/intel-core-i7-12700-processor-25m-cache-up-to-4-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/134591/intel-core-i7-12700-processor-25m-cache-up-to-4-90-ghz.html
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://lwn.net/Articles/716296/
https://lwn.net/Articles/716296/
https://lwn.net/Articles/873244/
https://lwn.net/Articles/873244/
https://lpc.events/event/16/contributions/1365/attachments/986/1912/lpc22-ebpf-kernel-scheduling-with-ghost.pdf
https://lpc.events/event/16/contributions/1365/attachments/986/1912/lpc22-ebpf-kernel-scheduling-with-ghost.pdf
https://lpc.events/event/16/contributions/1365/attachments/986/1912/lpc22-ebpf-kernel-scheduling-with-ghost.pdf
https://lpc.events/event/16/contributions/1365/attachments/986/1912/lpc22-ebpf-kernel-scheduling-with-ghost.pdf
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/

[24] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal,
Neha Agarwal, Radoslaw Burny, Shakeel Butt, Jichuan
Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and
Parthasarathy Ranganathan. Software-Defined Far Mem-
ory in Warehouse-Scale Computers. In International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19). ACM,
2019.

[25] Dusol Lee, Inhyuk Choi, Chanyoung Lee, Sungjin
Lee, and Jihong Kim. P2Cache: An Application-
Directed Page Cache for Improving Performance of Data-
Intensive Applications. In Workshop on Hot Topics in
Storage and File Systems (HotStorage’23), pages 31–36.
ACM, 2023.

[26] Ting Liang, Zuojun Li, Tianyue Lu, Hui Yuam, Yinben
Xia, Yungang Bao, Mingyu Chen, Shan Yizhou, Haifeng
Li, and Ke Liu. HoPP: Hardware-Software Co-Designed
Page Prefetching for Disaggregated Memory. In Inter-
national Symposium on High-Performance Computer
Architecture (HPCA’23). IEEE, 2023.

[27] Soo Yee Lim, Bogdan Stelea, Xueyuan Han, and Thomas
Pasquier. Secure Namespaced Kernel Audit for Contain-
ers. In Symposium on Cloud Computing (SoCC ’21).
ACM, 2021.

[28] Hasan Al Maruf and Mosharaf Chowdhury. Effectively
Prefetching Remote Memory with Leap. In Annual Tech-
nical Conference (ATC’20). USENIX, 2020.

[29] Shaurya Patel, Sidharth Agrawal, Alexandra Fedorova,
and Margo Seltzer. CHERI-Picking: Leveraging
Capability Hardware for Prefetching. In Workshop
on Programming Languages and Operating Systems
(PLOS’23). ACM, 2023.

[30] R Hugo Patterson, Garth A Gibson, Eka Ginting, Daniel
Stodolsky, and Jim Zelenka. Informed prefetching and
caching. In Symposium on Operating Systems Principles
(SOSP’95), pages 79–95. ACM, 1995.

[31] Zhenyuan Ruan, Malte Schwarzkopf, K. Marcos Aguil-
era, and Adam Belay. AIFM: high-performance,
application-integrated far memory. In Conference on Op-
erating Systems Design and Implementation (OSDI’20).
USENIX, 2020.

[32] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubra-
monian, Chris Wilkerson, Seth H Pugsley, and Zeshan

Chishti. Efficiently prefetching complex address pat-
terns. In International Symposium on Microarchitecture
(MICRO’15). IEEE/ACM, 2015.

[33] Andrew Tomkins, R Hugo Patterson, and Garth Gib-
son. Informed multi-process prefetching and caching.
ACM SIGMETRICS Performance Evaluation Review,
25(1):100–114, 1997.

[34] Steve VanDeBogart, Christopher Frost, and Eddie Kohler.
Reducing seek overhead with application-directed
prefetching. In Annual Technical Conference (ATC’09).
USENIX, 2009.

[35] Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Yiying
Zhang, Wenguang Chen, Ravi Netravali, Miryung Kim,
and Harry Guoqing Xu. Canvas: Isolated and Adaptive
Swapping for Multi-Applications on Remote Memory.
In Symposium on Networked Systems Design and Imple-
mentation (NSDI’23). USENIX, 2023.

[36] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon
Yang, Hao Wang, Blaise Sanouillet, Bikash Sharma,
Tejun Heo, Mayank Jain, Chunqiang Tang, and Dim-
itrios Skarlatos. TMO: Transparent Memory Offloading
in Datacenters. In International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS’22). ACM, 2022.

[37] Wonsup Yoon, Jinyoung Oh, Jisu Ok, Sue Moon, and
Youngjin Kwon. DiLOS: adding performance to paging-
based memory disaggregation. In Asia-Pacific Workshop
on Systems (APSys’21). ACM, 2021.

[38] Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and
Youngjin Kwon. DiLOS: Do Not Trade Compatibility
for Performance in Memory Disaggregation. In Euro-
pean Conference on Computer Systems (EuroSys’23),
pages 266–282. ACM, 2023.

A End-to-end Evaluation Raw Data

Table 1 results are normalized in Fig. 7 by dividing the exe-
cution time of a policy by the minimum among all policies.
We compute the values this way, so that the best performing
policy normalizes to 1. This allows us to present in Fig. 7 con-
sistent results with other benchmark experiments below. In
all benchmarks, the closer a value is to 1, the better the result.

Table 2 and Table 3 results are normalized in Fig. 7 by di-
viding the maximum number of operations per second among
all policies by the value of each policy.

Table 4 and Table 5 results are normalized in Fig. 7 by
dividing the execution time of a policy by the minimum among
all policies.

Policy Execution Time for 25% DRAM Allowance (s) Execution Time for 50% DRAM Allowance (s)
■ VMA 527.17 165.26
■ VMA eBPF 532.39 166.50
■ leap 705.51 180.06
■ leap eBPF 703.76 176.95
■ leap VMA 624.42 165.53
■ leap VMA eBPF 632.04 166.26

Table 1: Voltdb-tpcc benchmark results.

Policy 1,000 operations/sec for 25% DRAM Allowance 1,000 operations/sec for 50% DRAM Allowance
■ VMA 13,511 31,306
■ VMA eBPF 12,924 31,299
■ leap 8,492 23,147
■ leap eBPF 7,951 22,736
■ leap VMA 10,997 31,983
■ leap VMA eBPF 11,025 31,680

Table 2: Redis memtier random benchmark results.

Policy 1,000 operations/sec for 25% DRAM Allowance 1,000 operations/sec for 50% DRAM Allowance
■ VMA 13,089 22,399
■ VMA eBPF 12,838 22,648
■ leap 6,754 14,289
■ leap eBPF 6,892 13,576
■ leap VMA 6,898 17,049
■ leap VMA eBPF 6,924 17,920

Table 3: Redis memtier sequential benchmark results.

Policy Execution Time for 25% DRAM Allowance (s) Execution Time for 50% DRAM Allowance (s)
■ VMA 2,329 857
■ VMA eBPF 2,438 942
■ leap 4,373 960
■ leap eBPF 4,518 972
■ leap VMA 3,286 846
■ leap VMA eBPF 3,623 872

Table 4: GapBS PageRank benchmark results on the Twitter dataset.

Policy Execution Time for 25% DRAM Allowance (s) Execution Time for 50% DRAM Allowance (s)
■ VMA 1,783 323
■ VMA eBPF 1,821 331
■ leap 3,465 396
■ leap eBPF 3,620 398
■ leap VMA 2,438 320
■ leap VMA eBPF 2,686 330

Table 5: GapBS betweenness centrality benchmark results on the Twitter dataset.

	Introduction
	Background & Motivation
	eBPF
	Linux Prefetching Policy
	Motivating Experiments

	Design & Implementation
	Design Process
	eBPF Hooks
	Helper Functions

	Policy Examples
	Evaluation
	Metrics
	Policies
	Experimental Results

	Related Work
	Conclusion & Future Work
	End-to-end Evaluation Raw Data

